## Bluefish 2010 Stock Assessment Update

by Gary R. Shepherd and Julie Nieland

## Recent Issues in This Series

09-12 Description of the 2008 Oceanographic Conditions on the Northeast U.S. Continental Shelf, by MH Taylor, T Holzwarth-Davis, C Bascuñán, and JP Manning. August 2009.

09-13 Northeast Fisheries Science Center Publications, Reports, Abstracts, and Web Documents for Calendar Year 2008, compiled by A Toran. August 2009.

09-14 Update on Harbor Porpoise Take Reduction Plan Monitoring Initiatives: Compliance and Consequential Bycatch Rates from June 2007 through May 2008, Pinger Tester Development and Enforcement from January 2008 through July of 2009, by CD Orphanides, S Wetmore, and A Johnson. September 2009.

09-15 48th Northeast Regional Stock Assessment Workshop (48th SAW) Assessment Report, by Northeast Fisheries Science Center. October 2009.

09-16 Black Sea Bass 2009 Stock Assessment Update, by GR Shepherd. October 2009.
09-17 Stock assessment of summer flounder for 2009, by M Terceiro. October 2009.
09-18 Stock assessment of scup for 2009, by M Terceiro. October 2009.
09-19 Proration of Estimated Bycatch of Loggerhead Sea Turtles in U.S. Mid-Atlantic Sink Gillnet Gear to Vessel Trip Report Landed Catch, 2002-2006, by KT Murray. November 2009

09-20 River Herring Discard Estimation, Precision, and Sample Size Analysis, by SE Wigley, J Blaylock, and P Rago. December 2009.

10-01 49th Northeast Regional Stock Assessment Workshop (49th SAW) assessment summary report, by Northeast Fisheries Science Center. January 2010.

10-02 A Standard Method to Apportion Groundfish Catch to Stock Area for the Purpose of Real Time Quota Monitoring under Amendment 16, by Michael C. Palmer. January 2010.

10-03 49th Northeast Regional Stock Assessment Workshop (49th SAW) Assessment Report, by Northeast Fisheries Science Center. February 2010.

10-04 Brodeur's Guide to Otoliths of Some Northwest Atlantic Fishes, edited by R.S. McBride, J.W. Hauser, and S.J. Sutherland. May 2010.

10-05 Estimation of Albatross IV to Henry B. Bigelow calibration factors, by Miller TJ, Das C, Politis PJ, Miller AS, Lucey SM, Legault CM, Brown RW, Rago PJ. May 2010.

10-06 Biological Reference Points for Spiny Dogfish, by PJ Rago and KA Sosebee. May 2010.
10-07 North Atlantic Right Whale Sighting Survey (NARWSS) and Right Whale Sighting Advisory System (RWSAS) 2009 Results Summary, by C Khan, T Cole, P Duley, A Glass, and J Gatzke. May 2010.

10-08 In preparation.
10-09 50th Northeast Regional Stock Assessment Workshop (50th SAW): Assessment Summary Report, by Northeast Fisheries Science Center. July 2010.

10-10 Estimates of Cetacean and Pinniped Bycatch in the 2007 and 2008 Northeast Sink Gillnet and MidAtlantic Gillnet Fisheries, by CM Orphanides. July 2010.

10-11 Northeast Fisheries Science Center Cetacean Biopsy Training Manual, by F Wenzel, J Nicolas, F Larsen, and RM Pace III. July 2010.

10-12 A Survey of Social Capital and Attitudes toward Management in the New England Groundfish Fishery, by DS Holland, P Pinto da Silva, and J Wiersma. July 2010.

10-13 Black Sea Bass 2010 Stock Assessment Update, by GR Shepherd and J Nieland. July 2010.
10-14 Stock Assessment of Summer Flounder for 2010, by M Terceiro. July 2010.

# Bluefish 2010 Stock Assessment Update 

by Gary R. Shepherd and Julie Nieland

NOAA Fisheries, Northeast Fisheries Science Center, 166 Water Street, Woods Hole MA 02543

US DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, Massachusetts

## Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review, and most receive copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

All documents issued in this series since April 2001, and several documents issued prior to that date, have been copublished in both paper and electronic versions. To access the electronic version of a document in this series, go to http://www.nefsc.noaa.gov/nefsc/publications/. The electronic version is available in PDF format to permit printing of a paper copy directly from the Internet. If you do not have Internet access, or if a desired document is one of the pre-April 2001 documents available only in the paper version, you can obtain a paper copy by contacting the senior Center author of the desired document. Refer to the title page of the document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (i.e., non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

Information Quality Act Compliance: In accordance with section 515 of Public Law 106-554, the Northeast Fisheries Science Center completed both technical and policy reviews for this report. These predissemination reviews are on file at the NEFSC Editorial Office.

This document may be cited as:
Shepherd GR, Nieland J. 2010. Bluefish 2010 stock assessment update. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 10-15; 33 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http:// www.nefsc.noaa.gov/nefsc/publications/
Table of Contents
Executive Summary ..... iv
Introduction ..... 1
Life History ..... 1
Fisheries Dependent Data ..... 2
Fisheries Independent Data. ..... 4
ASAP Model ..... 5
Projections ..... 6
Conclusion ..... 6
Literature Cited ..... 7
List of Tables
Table 1. Commercial landings by state groupings used in length expansions. ..... 11
Table 2. Commercial landings, recreational landings, recreational discard loss and total catch for bluefish, ME-FL ..... 12
Table 3. Total bluefish catch at age, 1982-2009, ME to FL ..... 13
Table 4. NEFSC bluefish indices by age using fall inshore strata and re-transformed loge stratified mean number per tow ..... 14
Table 5. Bluefish survey indices by age from Delaware and New Jersey state trawl surveys ..... 15
Table 6. Bluefish survey indices by age from CT DEP trawl survey ..... 16
Table 7. Recreational catch per angler trip for bluefish, ME-FL, by age predicted from General linear model with negative binomial transformation ..... 17
Table 8. Standardized Z scores of bluefish age 0 recruitment indices. ..... 18
Table 9. Abundance at age for bluefish from ASAP model ..... 19
Table 10. Biomass at age for bluefish as estimated from ASAP model results. ..... 20
Table 11. Projection results for bluefish through 2012 under 5 different fishing scenarios ..... 21
List of Figures
Figure 1. Length frequency distribution of commercial bluefish landings, ME-FL, 2006- 2009 ..... 22
Figure 2. Recreational landings ( mt ) and recreational discard losses, ME-FL ..... 23
Figure 3. Total length frequencies of combined bluefish commercial and recreational fisheries, 2006-2009 ..... 24
Figure 4. Standardized age 0 recruitment indices for 2009 by program ..... 25
Figure 5. Total bluefish abundance and fishing mortality as estimated in ASAP model26
Figure 6. Total bluefish abundance at age from ASAP model results ..... 27
Figure 7. Total bluefish biomass, spawning stock biomass and reference points ..... 28
Figure 8. Retrospective bias in bluefish estimates from ASAP model ..... 29
Figure 9. Distribution of bluefish fishing mortality and spawning stock biomass resulting from 2500 MCMC iterations in ASAP model ..... 30
Appendixes
Appendix I. ASAP model output. ..... 31

## Executive Summary

The updated stock assessment was completed by adding catch and indices through 2009 to the previous 2008 assessment. Catch information consisted of commercial landings and length frequencies from Maine to Virginia collected by the Northeast Fisheries Science Center, North Carolina landings and length information collected by NC Division of Marine Fisheries, Florida landings and length information collected by FL Fish and Wildlife Research Institute, and recreational landings and discards from Maine to Florida collected in the NMFS recreational fisheries survey. The catch data was combined with fisheries independent survey data from the Northeast Fisheries Science Center, DE DNR, NJ DEP, CT DEP, coast-wide recreational catch per angler as well as recruitment indices from the SEAMAP program in the South Atlantic in the forward projecting catch at age model ASAP. Fishery dependent and independent information was partitioned into ages using a 2009 age-length key developed by Old Dominion University.

The result of the analysis shows that bluefish is not overfished or experiencing overfishing. Fishing mortality in 2009 was 0.10 , below the biological reference point ( $\mathrm{F}_{\mathrm{MSY}}$ ) of 0.19. Fishing mortality steadily declined from 0.31 in 1987 to 0.12 in 2002 and has remained steady since 2000 with an average $\mathrm{F}=0.14$. Recent mean biomass estimates peaked in 1982 at 425.0 thousand MT, then declined to 103.8 thousand MT by 1996 before increasing to the 2009 level of 156.0 thousand MT. Recruitment estimated in the ASAP model has remained relatively constant since 2000 at around 22.5 million age- 0 bluefish, with the exception of a relatively large 2006 cohort estimated as 35.2 million fish. The 2009 recruitment estimate was well below average at 8.0 million fish. There was no significant retrospective bias in the results. A projection of the results through 2012, under five different fishing scenarios, suggest that biomass will decline at fishing above status quo F due to a very poor incoming year class. However, abundance increases with F less than 0.18 . Changes in NMFS survey, limited age information and discard size data all contribute to the uncertainty in the assessment.

## Introduction

The Atlantic coast stock of bluefish (Pomatomus saltatrix), distributed from Maine through eastern Florida, is jointly managed by the Atlantic States Marine Fisheries Commission (ASMFC) and the Mid-Atlantic Fishery Management Council (MAFMC). A total annual quota is established and allocations given to commercial and recreational fisheries. The management plan requires a distribution of $80 \%$ to recreational and $20 \%$ to commercial, with provisions to shift unused recreational quota to commercial fisheries. A bluefish stock assessment was presented for peer-review at the Northeast Fisheries Science Center Stock Assessment Review Committee meeting (NEFSC SARC 41). The reviewers accepted the assessment for use in management decisions although there were some reservations about the modeling approach. Since the review, the bluefish stock assessment sub-committee (SASC) has produced annual updates while maintaining the basic model settings from the approved assessment. The current assessment is a continuation of the model update with the addition of 2009 catch at age and indices at age information.

## Life History

Bluefish, Pomatomus saltatrix, is a coastal, pelagic species found in temperate and tropical marine waters throughout the world (Goodbred and Graves 1996; Juanes et al. 1996). Bluefish spawn in offshore waters (Kendall and Walford 1979; Kendall and Naplin 1981). Larvae develop into juveniles in continental shelf waters and eventually move to estuarine and nearshore shelf habitats (Marks and Conover 1993; Hare and Cowen 1994; Able and Fahay 1998; Able et al. 2003). Bluefish are highly migratory along the U.S. Atlantic coast and seasonally move between the U.S. south Atlantic and Middle-Atlantic, traveling as far north as Maine (Shepherd et al., 2006).

Several studies show bluefish to be a moderately long-lived fish with a maximum age of 14 years (Hamer 1959; Lassiter 1962; Richards 1976; Barger 1990; Chiarella and Conover 1990; Terceiro and Ross 1993; Austin et al. 1999; Salerno et al. 2001; Sipe and Chittenden 2002). Bluefish up to 88 centimeter (cm) fork length (FL) have been aged (Chiarella and Conover 1990; Salerno et al. 2001), although Terceiro and Ross (1993) noted considerable variation in mean bluefish size-at-age. Scale ages have been used to estimate von Bertalanffy growth parameters (Lassiter 1962; Barger 1990; Terceiro and Ross 1993; Salerno et al. 2001). The values for $\mathrm{L}_{\infty}$
from these studies ( $87-128 \mathrm{~cm} \mathrm{FL}$ ) match closely to the largest individuals in catch data and growth rates do not differ between sexes (Hamer 1959; Salerno et al. 2001).

Bluefish grow nearly one-third of their maximum length in their first year (Richards 1976, Wilk 1977). Variation in growth rates or sizes-at-age among young bluefish is evident from the appearance of intra-annual cohorts. Lassiter (1962) identified a spring-spawned cohort and a summer-spawned cohort from the bimodal appearance of size at Annulus I for fish aged from North Carolina and the seasonal cohorts can differ in age by two to three months. Summerspawned larvae and juveniles grow faster than spring-spawned larvae and juveniles (McBride and Conover 1991) although size differences at annual age diminish greatly after three to four years (Lassiter 1962).

Spawning occurs offshore in the western North Atlantic Ocean, from approximately Massachusetts to Florida (Norcross et al. 1974; Kendall and Walford 1979; Kendall and Naplin 1981; Collins and Stender 1987). Bluefish are characterized as multiple spawners with indeterminate fecundity which spawn continuously during their spring migration (Robillard et al. 2008). In addition to distinctive spring and summer cohorts, Collins and Stender (1987) identified a fall-spawned cohort, demonstrating the potential of an extended bluefish spawning season.

Bluefish in the western North Atlantic are managed as a single stock (NEFSC 1997; Shepherd and Packer 2006). Genetic data support a unit stock hypothesis (Graves et al. 1992; Goodbred and Graves 1996; Davidson 2002). For management purposes, the ASMFC and MAFMC define the management unit as the portion of the stock occurring along the Atlantic Coast from Maine to the east coast of Florida.

## Fisheries Dependent Data

Annual catch information was developed for five components of the commercial fishery. Commercial landings from Maine to Virginia, North Carolina commercial landings, Florida commercial landings, coast-wide recreational landings and coast-wide recreational discards.

Commercial fisheries from Maine to Virginia were sampled as part of the NEFSC data collection program. Lengths were sampled from a variety of gears and market categories. Expansion of length data was completed by market category and quarter of the year, with the results merged into half year periods. In 2009 a total of 4,525 measurements from 102 samples were collected across all market categories from total landings of $1,959 \mathrm{mt}(62 \%$ of all
commercial landings; Table 1). Market category/quarter with inadequate length samples were filled with length information from adjacent quarters within the same market category or from NC samples if necessary.

North Carolina commercial landings were expanded using length samples collected by NC Division of Marine Fisheries. A total of 7,155 measurements from 73 samples were collected from landings of $1,096 \mathrm{mt}$ (Table 1). Expansion of landings at length were done by quarter, market category and gear type then combined into half year totals. Length samples from Florida 2009 commercial landings were also available. A total of 654 lengths from 22 samples were used to expand commercial landings of 97 mt (Table 1). No landings were reported for South Carolina or Georgia. Total coast-wide commercial landings in 2009 were $3,151 \mathrm{mt}$, an increase from 2,585 mt in 2008.

Length frequencies from commercial fisheries are characterized by a multi-modal distribution (Figure 1). In 2009 the distribution was strongly bimodal with one peak at 39 cm and a second around 65 cm . There were few fish below 25 cm . In comparison, the 2006 and 2008 distribution included a third mode around 55 cm . The 2007 distribution was bimodal, similar to 2009 except the first mode peaked around 25 cm .

Recreational landings are sampled for length as part of the MRFSS program. The 2009 recreational landings were $6,161 \mathrm{mt}$, a decrease from $8,573 \mathrm{mt}$ in 2008 (Table 2, Figure 2). The MRFSS 2009 length samples ( $\mathrm{N}=6,066$ ) were used to expand recreational landings per half year. Recreational discards in 2009 were estimated at 6,403 mt, however after adjusting for a $15 \%$ mortality rate, the resulting discard loss was 960 mt . A recent publication (Fabrizio et al 2008) shows that mortality may be higher and the $15 \%$ should be reevaluated in the next benchmark assessment. Length sampling for bluefish discards was limited. MRFSS at-sea sampling of recreational party boats provided lengths of 765 discarded bluefish. Total combined (commercial and recreational) length frequencies are presented in Figure 3.

Age data ( $\mathrm{n}=380$ ) was provided by Virginia Marine Resources Commission and Old Dominion University ageing lab. Since the age key developed from the VA samples was the only 2009 age information available, it was applied to both fishery dependent and independent length data. Age data was provided by cm, fork length by half year. In the previous year the fish were measured to total length, inches while the length frequencies were measured in fork length
to the nearest cm . Consequently, previous length frequencies were converted to TL, inches using the following equation:

$$
T L(\mathrm{in})=0.245(\mathrm{FL}(\mathrm{~cm}))+0.440
$$

The resulting catch at age through 2009 is presented in table 3. As in previous bluefish assessments the ages are summarized in a plus category for ages 6 and above to reduce the effect of aging error. Adjustments were made in the 2004-2006 catch at age data to reflect new MRFSS catch estimates.

## Fisheries Independent Data

Survey indices as used in the previous bluefish assessment were updated for 2009. These indices include SEAMAP juvenile (age 0) indices, Northeast Fisheries Science Center (NEFSC) bottom trawl survey indices for ages 0 to $6+$, NJ bottom trawl survey indices of ages 0 to 2, CT bottom trawl survey indices for ages 0 to $6+$, DE bottom trawl survey indices for ages 0 to 2 and Marine Recreational Fisheries Statistics Survey (MRFSS) recreational catch per angler trip (CPA) for ages 0 to $6+$ (adjusted using a general linear model with negative binomial transformation). The CT survey in 2008 was not conducted during the month of September, therefore the 2008 index was treated as missing data. The NEFSC survey in 2009 was modified by the replacement of the FV Albatross IV with the FSV Henry B. Bigelow. The consequence of the replacement was a change in the areas surveyed and the efficiency of the survey due to a change in net size and towing speed (as well as other intangibles associated with a different vessel). Beginning in 2009 only the outer third of the inshore strata set was sampled by the Bigelow. In addition, a conversion coefficient of 1.16 was used to convert Bigelow mean number per tow into equivalent Albatross units (Miller et al., 2010).

Among these survey indices, there were no consistent trends in total abundance. The total NEFSC index (ln re-transformed stratified mean number per tow) declined to 7.0 in 2009 from 12.8 in 2008 (Table 4). The series arithmetic average index equaled 27.3 (geometric mean of 14.26). The 2009 Delaware survey index of ages 0 to 2 was 0.342 fish per tow, below the time series average ( 0.531 per tow; Table 5). New Jersey trawl survey indices of ages 0 to 2 for 2009 (3.2 fish/tow) was also below the time series average of 6.6 per tow (Table 5). Indices of bluefish abundance in Long Island Sound from the CT DEP survey for ages 0 to 6+ in 2009
(32.86 per tow) were about average for the series ( 33.42 per tow; Table 6). In contrast, recreational catch per angler trip showed the highest annual increase in the time series, increasing from 0.37 fish per angler trip in 2008 to 0.83 in 2009 (Table 7). The increase was most prevalent at age 1 but was above average at all ages except age 0 .

Standardized recruitment indices (age 0) were developed using Z scores to compare the relative 2009 indices to time series averages. Indices from NEFSC, DE, NJ, and the Recreational CPA were all below average, CT was slightly above average whereas the SEAMAP index was well above average (Table 8, Figure 4).

## ASAP Model

The ASAP model (version 2.0.19) was run with the previous 1982-2008 input file updated for 2009 total catch, catch at age and indices at age. The fishery was modeled as a single fleet with selectivity fixed as a bimodal pattern with full recruitment at age 1 (coded age 2). Model weighting factors remained the same as previous assessments with the model heavily weighted towards the fishery total catch rather than survey indices. Weights at age remained constant since 2005. Natural mortality was fixed at 0.2 and maturity at age was held constant with full maturity at age 3 .

The results of the ASAP model showed a decrease in total abundance since 2007, declining from 97.9 million to 77.7 million (Table 9, Figure 5). The decline is primarily the result of a poor 2009 year class. Recruitment has remained relatively constant since 2000 around 22.5 million age-0 bluefish, with the exception of a large 2006 cohort estimated as 35.2 million fish. The 2009 recruitment estimate was well below average at 8.0 million fish compared to the series average of 23.1 million (Figure 6). However among other age groups, the 6 plus category was the largest since 1991. Total biomass in 2009 was the highest since 1989 and equaled 155,991 mt. (Table 10) The corresponding spawning stock biomass (SSB) at 126,200 mt was also the highest since 1989 (Figure 7). The 2009 estimate of total biomass is above the biomass necessary to sustain maximum yield ( $\mathrm{B}_{\mathrm{MSY}}$ ) of $147,052 \mathrm{mt}$ (Figure 7).

Fishing mortality estimates in ASAP are based on a separability assumption with $F$ at age the product of $F_{\text {MULT }}$ and selectivity. Full selectivity is fixed at age 1. The $2009 F_{\text {MULT }}$ value equals 0.10 (Figure 5). Fishing mortality steadily declined from 0.31 in 1987 to 0.12 in 2002 and has remained steady since 2000 with an average $\mathrm{F}=0.14$. The 2009 estimate of fishing mortality (0.10) is above the biological reference point for $\mathrm{F}_{\mathrm{MSY}}$ at 0.19 .

Retrospective bias for the final model was examined for F , total abundance, recruitment (age 0 ) and total biomass. The analysis shows little evidence of significant bias in the estimates (Figure 8). The variation in the final model results for F and SSB was determined using a Monte Carlo Markov chain with 2500 iterations. The MCMC results of variation around F ranged from 0.096 to 0.115 , with the $80 \%$ CI between 0.099 and 0.109 . Estimates for SSB ranged from 111,800 to $133,500 \mathrm{mt}$, with an $80 \%$ CI between $117,200 \mathrm{mt}$ and $128,100 \mathrm{mt}$. (Figure 9).

## Projections

Bluefish abundance and biomass through 2012 was examined for a range of fishing scenarios with a stochastic projection in AGEPRO software. The weight at age in 2010-2012 was assumed equal to 2009. Recruitment was derived from a random draw of 28 empirical estimates of age 0 abundance since 1982 and population size was drawn from the output of the MCMC run. Fishing mortality for 2010 was assumed equal to 2009. Five projection scenarios were examined: F status quo (0.10), F equal to $75 \%$ of $\mathrm{F}_{\mathrm{MSY}}(0.14), \mathrm{F}_{\text {target }}(0.17)$ which equals $90 \%$ of $\mathrm{F}_{\mathrm{MSY}}$ as defined in FMP, $\mathrm{F}_{0.1}(0.18)$ from the yield per recruit, and $\mathrm{F}_{\text {MSY }}(0.19)$

Results of the projections show a decrease in mean biomass and SSB for each scenario other than status quo $\mathrm{F}(\mathrm{F}=0.10)$ (Table 11). However, abundance would continue to increase for F less than 0.18 , and in all 5 cases the yield through 2012 would increase above the 2010 yield of $9,563 \mathrm{mt}$. Under status quo F, projected 2012 yield would increase to $10,821 \mathrm{mt}$, which includes commercial and recreational landings as well as recreational discards losses.

## Conclusion

The conclusion of the updated assessment is that the Atlantic coast bluefish stock continues to remain above the biological reference points ( $\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}_{\text {MSY }}$ ) and is not considered overfished or experience overfishing. The estimates of the model show little variation or significant retrospective patterns. The lack of variation is due in part to the fixed parameters for selectivity. Nevertheless, uncertainty remains in several aspects of the assessment input data. Age data continues to be limited to one age key from a limited set of samples. The assumption that this age information is applicable to all areas remains untested. Length samples from recreational discards are limited and contribute to the uncertainty as does the lack of commercial discard estimates. Changes in the NEFSC inshore survey series, from both vessel changes and
sample area adjustments, significantly alter indices. Strata inshore of 15 fathoms are currently sampled as part of the NEMAP survey, but the time series is not yet adequate to provide a tuning index.

The highly migratory nature of bluefish populations and the recruitment dynamics of the species create a unique modeling situation. Migration creates seasonal fisheries with unique selectivity patterns resulting in a bimodal partial recruitment pattern. This pattern has been identified in previous assessments as a source of uncertainty in the results and has been held constant in the model. The migratory pattern in bluefish also results in several recruitment events. A spring cohort, originating south of Cape Hatteras, NC during spring migrations, and a summer cohort originating in the offshore Mid-Atlantic Bight result in a bimodal age-0 size distribution. It has been hypothesized that the success of the spring cohort controls the abundance of adult bluefish. Future assessments should include any additional information that could index seasonal abundance of incoming recruitment.

## Literature Cited

Able, K.W. and M.P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press. New Brunswick, NJ.

Able, K.W., P. Rowe, M. Burlas, and D. Byrne. 2003. Use of ocean and estuarine habitats by young of the year bluefish (Pomatomus saltatrix) in the New York Bight. Fishery Bulletin 101:201-214.

Austin, H.M., D. Scoles, and A.J. Abell. 1999. Morphometric separation of annual cohorts within Mid-Atlantic bluefish, Pomatomus saltatrix, using discriminant function analysis. Fishery Bulletin 97:411-420.
Barger, L.E. 1990. Age and growth of bluefish Pomatomus saltatrix from the northern Gulf of Mexico and U.S. South Atlantic coast. Fishery Bulletin 88:805-809.
Beaumariage, D.S. 1969. Returns from the 1965 Schlitz tagging program including a cumulative analysis of previous results. Florida Dept. of Natural Resources, Marine Research Lab Technical Series No. 59:1-38.
Chiarella, L.A. and D.O. Conover. 1990. Spawning season and first year growth of adult bluefish from the New York Bight. Transactions of the American Fisheries Society 119:455-462.

Chittenden Jr., M.E., L.R. Barbieri, C.M. Jones, and S.J. Bobko. 1990. Initial information on the Atlantic croaker, annual report on the development of age determination methods, life
history - population dynamics information and evaluation of growth overfishing potential for important recreational fishes. April. Submitted to the Virginia Marine Resources Commission. 88 p.

Collins, M.R. and B.W. Stender. 1987. Larval king mackerel (Scomberomorus cavalla), Spanish mackerel (S. maculatus), and bluefish (Pomatomus saltatrix) off the southeast coast of the United States, 1973-1980. Bulletin of Marine Science 41:822-834.

Davidson, W.R. 2002. Population structure of western Atlantic bluefish (Pomatomus saltatrix). Master's Thesis. Thesis. University of Delaware., Wilmington, DE.

Fabrizio, M.C., F.S. Scharf, G.R. Shepherd, and J.E. Rosendale. 2008. Factors affecting catch-and-release mortality of bluefish. North Am. J. of Fisheries Management 28:533-546. Goodbred, C.O. and J.E. Graves. 1996. Genetic relationships among geographically isolated populations of bluefish (Pomatomus saltatrix). Marine and Freshwater Research 47:347355.

Graves, J.E., J.R. McDowell, A.M. Beardsley, and D.R. Scoles. 1992. Stock structure of the bluefish Pomatomus saltatrix along the Mid-Atlantic coast. Fishery Bulletin 90:703-710.

Hamer, P.E. 1959. Age and growth studies of the bluefish (Pomatomus saltatrix Linnaeus) of the New York Bight. Master’s Thesis. Rutgers University, New Brunswick, NJ.

Hare, J.A. and R.K. Cowen. 1995. Effect of age, growth rate, and ontogeny on the otolith size -fish size relationship in bluefish Pomatomus saltatrix, and the implications for backcalculation of size in fish early life history stages. Canadian Journal of Fisheries and Aquatic Science 52:1909-1922.

Juanes, F., J.A. Hare, and A.G. Miskiewicz. 1996. Comparing early life history strategies of Pomatomus saltatrix: a global approach. Marine and Freshwater Research 47:365-379.
Kendall, A.W.J. and L.A. Walford. 1979. Sources and distribution of bluefish, Pomatomus saltatrix, larvae and juveniles off the east coast of the United States. Fishery Bulletin 77:213-227.
Kendall, A.W.J. and N.A. Naplin.1981. Diel-depth distribution of summer ichthyoplankton in the Middle Atlantic Bight. Fishery Bulletin 79:705-726.
Lassiter, R.R. 1962. Life history aspects of the bluefish, Pomatomus saltatrix, larvae and juveniles off the east coast of the United States. Fishery Bulletin 77: 213-227.

Lund, W.A. and G.C. Maltezos. 1970. Movements and migrations of the bluefish, Pomatomus saltatrix, tagged in waters of New York and Southern New England. Transactions of the American Fisheries Society 99:719-725.

Marks, R.E. and D.O. Conover. 1993. Ontogenetic shift in the diet of young-of-the-year bluefish Pomatomus saltatrix during the oceanic phase of the early life history. Fishery Bulletin 91:97-106.

McBride, R.S. and D.O. Conover. 1991. Recruitment of young-of-the-year bluefish Pomatomus saltatrix to the New York Bight: variation in abundance and growth of spring- and summer-spawned cohorts. Marine Ecology Progress Series 78:205-216.
Miller, T.J., C. Das, P.J. Politis, A.S. Miller, S.M. Lucey, C.M. Legault, R.W. Brown, and P.J. Rago. 2010. Estimation of Albatross IV to Henry B. Bigelow calibration factors. NEFSC Ref. Doc. CRD 10-05.

Norcross, J.J., S.L. Richardson, W. H. Massmann, and E.B. Joseph. 1974. Development of young bluefish (Pomatomus saltatrix) and distribution of eggs and young in Virginian coastal waters. Transactions of the American Fisheries Society 103:477-497.

Northeast Fisheries Science Center. 1997. Report of the $23^{\text {rd }}$ Northeast Regional Stock Assessment Workshop ( $23{ }^{\text {rd }}$ SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. NEFSC Reference Document 97-05.

Northeast Fisheries Science Center. 2005. Report of the $41^{\text {st }}$ Northeast Regional Stock Assessment Workshop ( $41^{\text {st }}$ SAW): 41st SAW Assessment Report NEFSC CRD 05-14. September, 2005. 237 pp. 97-05.

Richards, S.W. 1976. Age, growth, and food of bluefish (Pomatomus saltatrix) from EastCentral Long Island Sound from July through November 1975. Transactions of the American Fisheries Society 105:523-525.

Robillard, E., C.S. Reiss, C.M. Jones. 2008. Reproductive biology of bluefish (Pomatomus saltatrix) along the East Coast of the United States. Fisheries Research 90 (2008): 198-208.

Salerno, D.J., J. Burnett and R.M. Ibara. 2001. Age, growth, maturity, and spatial distribution of bluefish, Pomatomus saltatrix, off the northeast coast of the United States, 1985-96. Journal of Northwest Atlantic Fishery Science 29:31-39.

Sipe, A.M. and M.E. Chittenden Jr. 2002. A comparison of calcified structures for ageing bluefish in the Chesapeake Bay region. Transactions of the American Fisheries Society 131:783-790.

Shepherd, G.R., J. Moser, D. Deuel, P. Carlson. 2006. The migration patterns of bluefish (Pomatomus saltatrix) along the Atlantic coast determined from tag recoveries. Fish. Bull. 104:559-570.

Shepherd, G.R. and D. B. Packer. 2006. Essential Fish Habitat Source Document: Bluefish, Pomatomus saltatrix, Life History and Habitat Characteristics $2^{\text {nd }}$ edition. NOAA Technical Memorandum, NMFS-NE-198:100.

Terceiro, M. and J.L. Ross. 1993. A comparison of alternative methods for the estimation of age from length data for Atlantic coast bluefish. Fishery Bulletin 91:534-549.

Wilk, S.J. 1977. Biological and fisheries data on bluefish, Pomatomus saltatrix (Linnaeus). NOAA, NMFS, NEFC, Sandy Hook Lab. Technical Series Report. No. 11.

Table 1. Commercial landings (mt) by state groupings used in length expansions.

|  | ME - VA | NC | SC-FL | Total |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{1 9 8 2}$ | 4,137 | 1,946 | 914 | 6,997 |
| $\mathbf{1 9 8 3}$ | 3,421 | 3,061 | 685 | 7,166 |
| $\mathbf{1 9 8 4}$ | 3,046 | 1,615 | 720 | 5,380 |
| $\mathbf{1 9 8 5}$ | 4,199 | 1,634 | 289 | 6,122 |
| $\mathbf{1 9 8 6}$ | 4,559 | 1,562 | 531 | 6,651 |
| $\mathbf{1 9 8 7}$ | 3,805 | 2,069 | 705 | 6,578 |
| $\mathbf{1 9 8 8}$ | 4,277 | 2,286 | 599 | 7,161 |
| $\mathbf{1 9 8 9}$ | 2,793 | 1,493 | 455 | 4,740 |
| $\mathbf{1 9 9 0}$ | 3,684 | 2,076 | 489 | 6,250 |
| $\mathbf{1 9 9 1}$ | 3,709 | 1,778 | 673 | 6,160 |
| $\mathbf{1 9 9 2}$ | 3,423 | 1,288 | 495 | 5,205 |
| $\mathbf{1 9 9 3}$ | 3,039 | 1,226 | 543 | 4,808 |
| $\mathbf{1 9 9 4}$ | 3,071 | 809 | 424 | 4,304 |
| $\mathbf{1 9 9 5}$ | 2,034 | 1,365 | 229 | 3,628 |
| $\mathbf{1 9 9 6}$ | 2,654 | 1,496 | 62 | 4,212 |
| $\mathbf{1 9 9 7}$ | 2,165 | 1,815 | 129 | 4,109 |
| $\mathbf{1 9 9 8}$ | 2,257 | 1,327 | 155 | 3,739 |
| $\mathbf{1 9 9 9}$ | 1,921 | 1,252 | 157 | 3,330 |
| $\mathbf{2 0 0 0}$ | 2,057 | 1,525 | 64 | 3,647 |
| $\mathbf{2 0 0 1}$ | 2,038 | 1,844 | 63 | 3,945 |
| $\mathbf{2 0 0 2}$ | 2,025 | 1,054 | 37 | 3,116 |
| $\mathbf{2 0 0 3}$ | 1,739 | 1,574 | 45 | 3,358 |
| $\mathbf{2 0 0 4}$ | 1,885 | 1,707 | 56 | 3,647 |
| $\mathbf{2 0 0 5}$ | 1,844 | 1,122 | 71 | 3,037 |
| $\mathbf{2 0 0 6}$ | 1,851 | 1,146 | 45 | 3,042 |
| $\mathbf{2 0 0 7}$ | 2,282 | 909 | 76 | 3,267 |
| $\mathbf{2 0 0 8}$ | 1,766 | 762 | 57 | 2,585 |
| $\mathbf{2 0 0 9}$ | 1,959 | 1,096 | 97 | 3,151 |
|  |  |  |  |  |

Table 2. Commercial landings, recreational landings, recreational discard loss and total catch for bluefish, ME-FL.
$\left.\begin{array}{lcccccccc}\text { Total Catch } \\ & & & & & & & & \\ \text { (m) (w/o }\end{array}\right)$

Table 3. Total bluefish catch at age (000s), 1982-2009, ME to FL.

|  | Age |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6+ | total |
| 1982 | 11164.1 | 9747.9 | 2850.8 | 2439.3 | 795.3 | 1213.5 | 3736.3 | 31,947 |
| 1983 | 4778.4 | 7666.7 | 8686.1 | 3022.0 | 970.6 | 1325.3 | 4778.4 | 31,228 |
| 1984 | 7121.3 | 6807.3 | 6718.5 | 2039.9 | 895.1 | 744.7 | 3176.7 | 27,503 |
| 1985 | 4676.7 | 6468.8 | 5773.3 | 2925.5 | 1328.5 | 520.0 | 2377.1 | 24,070 |
| 1986 | 5169.3 | 8070.7 | 8728.0 | 2801.7 | 1056.4 | 1703.1 | 4465.0 | 31,994 |
| 1987 | 3127.1 | 5419.5 | 5177.8 | 5757.4 | 2009.3 | 1083.0 | 3948.2 | 26,522 |
| 1988 | 1709.8 | 2083.6 | 2524.0 | 1588.6 | 1984.1 | 1598.6 | 2740.4 | 14,229 |
| 1989 | 3473.6 | 5672.6 | 3221.1 | 992.1 | 395.9 | 1168.5 | 2409.8 | 17,334 |
| 1990 | 2726.7 | 7185.8 | 1840.7 | 687.2 | 381.8 | 431.6 | 2478.6 | 15,732 |
| 1991 | 3694.6 | 5292.6 | 7391.9 | 1590.7 | 310.9 | 224.7 | 2136.5 | 20,642 |
| 1992 | 2131.3 | 9633.3 | 1709.8 | 2352.9 | 583.4 | 479.2 | 967.2 | 17,857 |
| 1993 | 1194.1 | 2081.6 | 1566.9 | 593.0 | 1040.8 | 669.0 | 1178.9 | 8,324 |
| 1994 | 1970.8 | 3144.3 | 1313.3 | 368.1 | 296.7 | 849.5 | 1073.1 | 9,016 |
| 1995 | 1822.8 | 3371.4 | 735.7 | 137.7 | 214.1 | 695.7 | 1057.8 | 8,035 |
| 1996 | 1701.5 | 2145.1 | 631.5 | 202.2 | 207.2 | 545.0 | 1411.8 | 6,844 |
| 1997 | 1634.1 | 4299.3 | 1496.2 | 510.5 | 196.6 | 93.4 | 1212.3 | 9,443 |
| 1998 | 683.5 | 2754.1 | 2786.1 | 861.3 | 261.0 | 308.0 | 458.8 | 8,113 |
| 1999 | 1638.5 | 1946.1 | 2096.7 | 572.8 | 174.7 | 352.5 | 482.8 | 7,264 |
| 2000 | 667.4 | 4396.5 | 2693.3 | 717.7 | 96.9 | 536.0 | 155.9 | 9,264 |
| 2001 | 1414.3 | 4466.7 | 3466.2 | 1151.9 | 198.3 | 608.0 | 243.5 | 11,549 |
| 2002 | 587.1 | 5145.6 | 1661.6 | 542.6 | 340.3 | 236.8 | 415.9 | 8,930 |
| 2003 | 819.3 | 2646.0 | 3975.0 | 774.6 | 377.9 | 319.8 | 644.0 | 9,557 |
| 2004 | 434.4 | 5270.8 | 2289.6 | 1265.2 | 435.4 | 473.5 | 662.8 | 10,832 |
| 2005 | 3262.8 | 2560.5 | 4179.2 | 1389.9 | 411.9 | 585.4 | 494.7 | 12,884 |
| 2006 | 2718.6 | 3489.6 | 2975.5 | 1090.2 | 301.9 | 283.5 | 662.6 | 11,522 |
| 2007 | 695.0 | 3065.0 | 5390.0 | 1548.2 | 852.7 | 582.7 | 1375.2 | 13,509 |
| 2008 | 893.1 | 3725.3 | 4011.6 | 463.1 | 615.1 | 239.1 | 396.3 | 10,344 |
| 2009 | 144.5 | 3083.9 | 2857.8 | 482.1 | 354.2 | 236.5 | 599.9 | 7,759 |

Table 4. NEFSC bluefish indices by age using fall inshore strata and re-transformed loge stratified mean number per tow.

|  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathbf{1 9 8 2}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}+$ | total |
| $\mathbf{1 9 8 3}$ | 8.768 | 10.788 | 0.064 | 0.053 | 0.011 |  | 0.023 | 29.707 |
| $\mathbf{1 9 8 4}$ | 81.356 | 16.695 | 0.845 | 0.034 | 0.004 | 0.017 | 0.068 | 25.852 |
| $\mathbf{1 9 8 5}$ | 17.473 | 9.703 | 0.925 | 0.428 | 0.096 | 0.036 | 0.088 | 28.749 |
| $\mathbf{1 9 8 6}$ | 21.055 | 0.923 | 0.042 | 0.060 | 0.024 | 0.028 | 0.033 | 22.165 |
| $\mathbf{1 9 8 7}$ | 7.589 | 1.768 | 0.167 | 0.238 | 0.098 | 0.049 | 0.158 | 10.067 |
| $\mathbf{1 9 8 8}$ | 9.493 | 0.067 | 0.009 | 0.010 | 0.028 | 0.006 | 0.023 | 9.636 |
| $\mathbf{1 9 8 9}$ | 237.573 | 1.254 | 0.113 | 0.130 |  | 0.014 | 0.119 | 239.203 |
| $\mathbf{1 9 9 0}$ | 6.186 | 3.637 | 0.006 | 0.016 | 0.016 |  | 0.084 | 9.945 |
| $\mathbf{1 9 9 1}$ | 7.878 | 0.154 | 0.050 | 0.026 | 0.001 |  | 0.001 | 8.110 |
| $\mathbf{1 9 9 2}$ | 6.625 | 0.637 | 0.016 | 0.022 | 0.002 | 0.002 | 0.008 | 7.312 |
| $\mathbf{1 9 9 3}$ | 1.109 | 0.123 | 0.044 | 0.003 | 0.034 | 0.023 |  | 1.336 |
| $\mathbf{1 9 9 4}$ | 6.580 | 0.760 | 0.010 | 0.019 | 0.030 | 0.021 | 0.006 | 7.426 |
| $\mathbf{1 9 9 5}$ | 9.222 | 4.122 | 0.115 | 0.015 | 0.015 | 0.025 | 0.062 | 13.576 |
| $\mathbf{1 9 9 6}$ | 9.643 | 1.638 | 0.211 | 0.144 | 0.027 | 0.021 | 0.019 | 11.703 |
| $\mathbf{1 9 9 7}$ | 4.179 | 0.482 | 0.217 | 0.107 | 0.002 | 0.007 | 0.013 | 5.007 |
| $\mathbf{1 9 9 8}$ | 4.793 | 0.387 | 0.074 | 0.045 | 0.017 |  |  | 5.316 |
| $\mathbf{1 9 9 9}$ | 15.266 | 1.528 | 0.061 | 0.051 | 0.018 | 0.002 | 0.008 | 16.934 |
| $\mathbf{2 0 0 0}$ | 2.485 | 1.517 | 0.157 | 0.017 | 0.015 | 0.006 |  | 4.197 |
| $\mathbf{2 0 0 1}$ | 8.819 | 0.754 | 0.148 | 0.020 | 0.002 | 0.001 | 0.003 | 9.747 |
| $\mathbf{2 0 0 2}$ | 7.815 | 1.210 | 0.042 | 0.037 |  |  |  | 9.104 |
| $\mathbf{2 0 0 3}$ | 48.332 | 3.085 | 0.277 | 0.019 | 0.006 | 0.022 | 0.043 | 51.784 |
| $\mathbf{2 0 0 4}$ | 7.048 | 5.307 | 0.372 | 0.079 | 0.008 | 0.012 | 0.031 | 12.857 |
| $\mathbf{2 0 0 5}$ | 24.086 | 0.705 | 0.107 | 0.098 | 0.031 | 0.030 | 0.012 | 25.07 |
| $\mathbf{2 0 0 6}$ | 36.300 | 1.017 | 0.714 | 0.016 |  |  |  | 38.047 |
| $\mathbf{2 0 0 7}$ | 8.837 | 7.064 | 0.583 | 0.082 | 0.012 | 0.004 | 0.009 | 16.590 |
| $\mathbf{2 0 0 8}$ | 7.444 | 4.543 | 0.797 | 0.012 | 0.010 | 0.009 | 0.026 | 12.840 |
| $\mathbf{2 0 0 9 *}$ | 1.050 | 5.385 | 0.503 | 0.013 | 0.011 | 0.000 | 0.037 | 6.999 |

Table 5. Bluefish survey indices by age (stratified geometric mean number per tow) from Delaware and New Jersey state trawl surveys.

| Delaware |  |  | New Jersey |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | total | 0 | 1 | 2 | total |
| 1982 |  |  |  |  |  |  |  |  |
| 1983 |  |  |  |  |  |  |  |  |
| 1984 |  |  |  |  |  |  |  |  |
| 1985 |  |  |  |  |  |  |  |  |
| 1986 |  |  |  |  |  |  |  |  |
| 1987 |  |  |  |  |  |  |  |  |
| 1988 |  |  |  |  | 26.066 | 0.411 | 0.002 | 26.48 |
| 1989 |  |  |  |  | 7.041 | 0.544 | 0.026 | 7.61 |
| 1990 | 0.082 | 0.683 | 0.015 | 0.780 | 5.947 | 0.299 | 0.005 | 6.25 |
| 1991 | 0.132 | 0.209 | 0.004 | 0.345 | 3.652 | 0.009 | 0.020 | 3.68 |
| 1992 | 0.071 | 0.211 | 0.003 | 0.285 | 3.747 | 0.582 | 0.040 | 4.37 |
| 1993 | 0.063 | 0.220 | 0.013 | 0.296 | 2.483 | 0.085 | 0.109 | 2.68 |
| 1994 | 0.103 | 0.295 | 0.004 | 0.401 | 11.179 | 0.231 | 0.017 | 11.43 |
| 1995 | 0.093 | 0.376 | 0.031 | 0.500 | 5.055 | 0.238 | 0.050 | 5.34 |
| 1996 | 0.081 | 0.426 | 0.017 | 0.524 | 2.483 | 0.096 | 0.015 | 2.59 |
| 1997 | 0.147 | 0.317 | 0.023 | 0.486 | 3.930 | 0.075 | 0.034 | 4.04 |
| 1998 | 0.080 | 0.581 | 0.107 | 0.768 | 1.719 | 0.243 | 0.154 | 2.12 |
| 1999 | 0.097 | 0.439 | 0.034 | 0.570 | 1.710 | 0.350 | 0.035 | 2.10 |
| 2000 | 0.113 | 0.365 | 0.047 | 0.525 | 1.410 | 0.395 | 0.102 | 1.91 |
| 2001 | 0.290 | 0.555 | 0.107 | 0.952 | 0.400 | 0.068 | 0.090 | 0.56 |
| 2002 | 0.159 | 1.210 | 0.047 | 1.416 | 7.924 | 3.469 | 0.077 | 11.47 |
| 2003 | 0.038 | 0.224 | 0.012 | 0.274 | 6.793 | 0.196 | 0.077 | 7.07 |
| 2004 | 0.074 | 0.836 | 0.030 | 0.940 | 2.217 | 0.510 | 0.422 | 3.15 |
| 2005 | 0.060 | 0.127 | 0.009 | 0.195 | 6.075 | 0.286 | 0.180 | 6.54 |
| 2006 | 0.039 | 0.070 | 0.020 | 0.129 | 6.572 | 0.144 | 0.088 | 6.80 |
| 2007 | 0.093 | 0.321 | 0.021 | 0.436 | 9.161 | 3.750 | 0.326 | 13.24 |
| 2008 | 0.087 | 0.172 | 0.016 | 0.275 | 8.629 | 1.213 | 0.070 | 9.91 |
| 2009 | 0.031 | 0.282 | 0.029 | 0.342 | 2.907 | 0.286 | 0.016 | 3.21 |

Table 6. Bluefish survey indices by age (stratified geometric mean number per tow) from CT DEP trawl survey.

Age

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6+ | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 |  |  |  |  |  |  |  |  |
| 1984 | 52.101 | 0.800 | 0.760 | 0.298 | 0.054 | 0.014 | 0.041 | 54.068 |
| 1985 | 36.368 | 1.573 | 1.075 | 0.498 | 0.244 | 0.044 | 0.131 | 39.933 |
| 1986 | 8.727 | 0.547 | 0.352 | 0.083 | 0.053 | 0.028 | 0.018 | 9.808 |
| 1987 | 14.357 | 2.229 | 0.951 | 0.279 | 0.213 | 0.131 | 0.070 | 18.230 |
| 1988 | 13.122 | 0.851 | 0.567 | 0.358 | 0.234 | 0.173 | 0.106 | 15.411 |
| 1989 | 47.873 | 1.900 | 0.732 | 0.205 | 0.347 | 0.282 | 0.072 | 51.411 |
| 1990 | 28.027 | 3.499 | 0.742 | 0.106 | 0.141 | 0.200 | 0.024 | 32.739 |
| 1991 | 36.482 | 5.233 | 2.078 | 0.194 | 0.135 | 0.164 | 0.075 | 44.361 |
| 1992 | 24.585 | 3.359 | 1.750 | 0.172 | 0.152 | 0.283 | 0.005 | 30.306 |
| 1993 | 25.810 | 1.241 | 2.161 | 0.877 | 0.385 | 0.107 |  | 30.581 |
| 1994 | 30.018 | 1.410 | 0.752 | 0.512 | 0.386 | 0.251 | 0.010 | 33.339 |
| 1995 | 26.588 | 6.967 | 1.313 | 0.303 | 0.168 | 0.202 | 0.034 | 35.575 |
| 1996 | 42.334 | 0.491 | 1.031 | 0.360 | 0.060 | 0.036 | 0.159 | 44.471 |
| 1997 | 40.413 | 0.586 | 0.536 | 0.140 | 0.051 | 0.022 | 0.058 | 41.806 |
| 1998 | 34.831 | 1.453 | 0.512 | 0.130 | 0.058 | 0.011 | 0.025 | 37.020 |
| 1999 | 44.950 | 5.617 | 0.287 | 0.188 | 0.046 | 0.049 | 0.079 | 51.216 |
| 2000 | 22.593 | 3.652 | 1.408 | 0.178 | 0.021 | 0.016 | 0.029 | 27.897 |
| 2001 | 34.050 | 2.294 | 2.180 | 0.283 | 0.026 | 0.021 | 0.042 | 38.896 |
| 2002 | 12.419 | 4.926 | 0.578 | 0.135 | 0.045 | 0.048 | 0.063 | 18.214 |
| 2003 | 27.307 | 0.357 | 0.655 | 0.104 | 0.024 | 0.034 | 0.044 | 28.525 |
| 2004 | 20.134 | 3.944 | 3.315 | 1.336 | 0.071 | 0.160 | 0.171 | 29.131 |
| 2005 | 29.687 | 0.047 | 0.243 | 0.099 | 0.037 | 0.021 | 0.007 | 30.141 |
| 2006 | 14.353 | 0.719 | 0.558 | 0.030 |  |  |  | 15.660 |
| 2007 | 25.680 | 16.460 | 0.940 | 0.260 | 0.040 | 0.010 | 0.040 | 43.430 |
| 2008 |  |  |  |  |  |  |  |  |
| 2009 | 30.217 | 1.702 | 0.733 | 0.107 | 0.067 | 0.006 | 0.029 | 32.860 |

Table 7. Recreational catch per angler trip for bluefish, ME-FL, by age predicted from General linear model with negative binomial transformation.

Age

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6+ | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 0.108 | 0.098 | 0.027 | 0.021 | 0.01 | 0.016 | 0.048 | 0.328 |
| 1983 | 0.041 | 0.061 | 0.067 | 0.026 | 0.009 | 0.011 | 0.045 | 0.26 |
| 1984 | 0.093 | 0.075 | 0.06 | 0.027 | 0.013 | 0.009 | 0.046 | 0.323 |
| 1985 | 0.071 | 0.086 | 0.087 | 0.045 | 0.016 | 0.008 | 0.036 | 0.349 |
| 1986 | 0.053 | 0.066 | 0.082 | 0.034 | 0.013 | 0.018 | 0.053 | 0.319 |
| 1987 | 0.035 | 0.064 | 0.063 | 0.065 | 0.023 | 0.014 | 0.052 | 0.316 |
| 1988 | 0.022 | 0.027 | 0.031 | 0.023 | 0.028 | 0.023 | 0.043 | 0.197 |
| 1989 | 0.056 | 0.085 | 0.044 | 0.016 | 0.005 | 0.014 | 0.038 | 0.258 |
| 1990 | 0.038 | 0.115 | 0.033 | 0.012 | 0.006 | 0.005 | 0.029 | 0.238 |
| 1991 | 0.047 | 0.059 | 0.061 | 0.028 | 0.005 | 0.003 | 0.028 | 0.231 |
| 1992 | 0.016 | 0.049 | 0.034 | 0.055 | 0.013 | 0.005 | 0.024 | 0.196 |
| 1993 | 0.022 | 0.049 | 0.023 | 0.013 | 0.024 | 0.016 | 0.016 | 0.163 |
| 1994 | 0.044 | 0.066 | 0.03 | 0.01 | 0.006 | 0.013 | 0.019 | 0.188 |
| 1995 | 0.016 | 0.075 | 0.042 | 0.008 | 0.005 | 0.012 | 0.021 | 0.179 |
| 1996 | 0.038 | 0.082 | 0.034 | 0.007 | 0.002 | 0.003 | 0.022 | 0.188 |
| 1997 | 0.038 | 0.079 | 0.057 | 0.013 | 0.006 | 0.007 | 0.034 | 0.234 |
| 1998 | 0.031 | 0.077 | 0.067 | 0.029 | 0.01 | 0.007 | 0.018 | 0.239 |
| 1999 | 0.116 | 0.098 | 0.071 | 0.029 | 0.008 | 0.009 | 0.017 | 0.348 |
| 2000 | 0.035 | 0.182 | 0.089 | 0.028 | 0.003 | 0.012 | 0.007 | 0.356 |
| 2001 | 0.062 | 0.162 | 0.098 | 0.036 | 0.006 | 0.012 | 0.009 | 0.385 |
| 2002 | 0.064 | 0.196 | 0.051 | 0.024 | 0.008 | 0.008 | 0.018 | 0.369 |
| 2003 | 0.035 | 0.096 | 0.135 | 0.025 | 0.008 | 0.01 | 0.02 | 0.329 |
| 2004 | 0.018 | 0.157 | 0.088 | 0.051 | 0.013 | 0.016 | 0.024 | 0.367 |
| 2005 | 0.101 | 0.071 | 0.106 | 0.036 | 0.009 | 0.014 | 0.012 | 0.349 |
| 2006 | 0.194 | 0.151 | 0.146 | 0.031 | 0.012 | 0.006 | 0.027 | 0.567 |
| 2007 | 0.022 | 0.086 | 0.148 | 0.042 | 0.024 | 0.018 | 0.038 | 0.377 |
| 2008 | 0.036 | 0.147 | 0.137 | 0.014 | 0.016 | 0.006 | 0.012 | 0.367 |
| 2009 | 0.020 | 0.347 | 0.311 | 0.050 | 0.037 | 0.015 | 0.051 | 0.832 |

Table 8. Standardized $Z$ scores of bluefish age 0 recruitment indices.


Table 9. Abundance at age ( 000 s ) for bluefish from ASAP model.

| Jan 1 abundance 000s |  |  |  |  |  |  |  | total$173,140$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6+ |  |
| 1982 | 39,961 | 31,540 | 15,136 | 9,642 | 8,332 | 7,299 | 61,230 |  |
| 1983 | 39,508 | 31,101 | 22,228 | 10,760 | 7,351 | 6,480 | 49,099 | 166,528 |
| 1984 | 48,439 | 30,446 | 21,286 | 15,373 | 8,090 | 5,660 | 38,811 | 168,103 |
| 1985 | 26,731 | 37,554 | 21,214 | 14,972 | 11,656 | 6,267 | 31,564 | 149,959 |
| 1986 | 20,099 | 20,727 | 26,177 | 14,926 | 11,354 | 9,031 | 26,897 | 129,210 |
| 1987 | 13,728 | 14,928 | 12,719 | 16,334 | 10,653 | 8,420 | 22,972 | 99,753 |
| 1988 | 19,547 | 10,130 | 8,984 | 7,793 | 11,551 | 7,848 | 19,765 | 85,618 |
| 1989 | 44,245 | 14,593 | 6,312 | 5,688 | 5,603 | 8,612 | 17,926 | 102,980 |
| 1990 | 18,400 | 33,601 | 9,565 | 4,191 | 4,189 | 4,250 | 18,018 | 92,214 |
| 1991 | 22,979 | 14,029 | 22,284 | 6,422 | 3,104 | 3,191 | 15,175 | 87,183 |
| 1992 | 11,319 | 17,247 | 8,882 | 14,320 | 4,652 | 2,327 | 12,007 | 70,754 |
| 1993 | 12,569 | 8,609 | 11,356 | 5,922 | 10,569 | 3,534 | 9,693 | 62,253 |
| 1994 | 18,775 | 9,573 | 5,691 | 7,601 | 4,380 | 8,041 | 9,022 | 63,083 |
| 1995 | 17,147 | 14,386 | 6,442 | 3,874 | 5,669 | 3,352 | 11,920 | 62,789 |
| 1996 | 16,445 | 13,307 | 10,055 | 4,544 | 2,941 | 4,396 | 10,905 | 62,593 |
| 1997 | 15,023 | 12,801 | 9,382 | 7,150 | 3,465 | 2,288 | 11,032 | 61,140 |
| 1998 | 20,492 | 11,598 | 8,807 | 6,520 | 5,389 | 2,672 | 9,365 | 64,843 |
| 1999 | 23,766 | 15,974 | 8,213 | 6,290 | 4,982 | 4,198 | 8,694 | 72,118 |
| 2000 | 15,662 | 18,707 | 11,640 | 6,025 | 4,872 | 3,919 | 9,568 | 70,393 |
| 2001 | 27,146 | 12,288 | 13,503 | 8,464 | 4,646 | 3,820 | 9,922 | 79,790 |
| 2002 | 21,201 | 21,155 | 8,694 | 9,634 | 6,464 | 3,618 | 9,935 | 80,700 |
| 2003 | 23,042 | 16,649 | 15,310 | 6,337 | 7,438 | 5,073 | 9,985 | 83,833 |
| 2004 | 16,954 | 17,990 | 11,845 | 10,982 | 4,853 | 5,803 | 10,959 | 79,385 |
| 2005 | 23,053 | 13,218 | 12,745 | 8,462 | 8,392 | 3,781 | 12,158 | 81,808 |
| 2006 | 35,163 | 17,922 | 9,285 | 9,033 | 6,441 | 6,519 | 11,437 | 95,800 |
| 2007 | 26,028 | 27,444 | 12,737 | 6,653 | 6,914 | 5,024 | 13,066 | 97,865 |
| 2008 | 22,163 | 20,165 | 19,083 | 8,941 | 5,040 | 5,352 | 12,886 | 93,630 |
| 2009 | 8,013 | 17,339 | 14,433 | 13,765 | 6,866 | 3,940 | 13,321 | 77,678 |

Table 10. Biomass at age (mt) for bluefish as estimated from ASAP model results.

|  | biomass at age |  |  | mt |  |  |  | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6+ |  |
| 1982 | 5,595 | 15,454 | 23,006 | 19,767 | 26,664 | 30,890 | 303,578 | 424,954 |
| 1983 | 3,951 | 13,062 | 22,006 | 23,135 | 23,229 | 28,623 | 273,825 | 387,830 |
| 1984 | 4,844 | 12,483 | 19,796 | 28,132 | 23,541 | 25,372 | 219,284 | 333,451 |
| 1985 | 2,673 | 15,022 | 20,578 | 28,895 | 32,870 | 25,011 | 159,494 | 284,543 |
| 1986 | 2,412 | 10,156 | 31,412 | 34,628 | 35,764 | 38,859 | 130,395 | 283,627 |
| 1987 | 1,647 | 4,478 | 15,008 | 32,994 | 31,532 | 33,066 | 114,490 | 233,217 |
| 1988 | 3,323 | 4,052 | 8,984 | 15,975 | 32,804 | 27,971 | 91,374 | 184,483 |
| 1989 | 5,752 | 4,378 | 6,691 | 12,059 | 20,395 | 35,360 | 84,611 | 169,245 |
| 1990 | 3,864 | 16,800 | 8,417 | 7,250 | 13,573 | 17,753 | 80,613 | 148,271 |
| 1991 | 3,217 | 4,630 | 15,599 | 11,109 | 8,722 | 12,645 | 75,343 | 131,265 |
| 1992 | 1,811 | 6,726 | 9,237 | 27,065 | 13,025 | 7,685 | 61,321 | 126,871 |
| 1993 | 2,262 | 5,079 | 10,788 | 14,569 | 28,854 | 11,441 | 47,302 | 120,296 |
| 1994 | 2,253 | 3,829 | 5,122 | 14,290 | 13,314 | 30,211 | 36,925 | 105,945 |
| 1995 | 2,915 | 6,330 | 6,313 | 6,701 | 16,156 | 13,604 | 55,975 | 107,994 |
| 1996 | 2,796 | 5,855 | 9,854 | 7,861 | 8,383 | 17,839 | 51,208 | 103,795 |
| 1997 | 1,953 | 6,528 | 9,757 | 15,874 | 10,602 | 9,403 | 50,745 | 104,861 |
| 1998 | 3,893 | 6,959 | 8,279 | 15,323 | 18,323 | 10,743 | 50,381 | 113,900 |
| 1999 | 3,327 | 8,466 | 7,556 | 13,146 | 17,089 | 17,212 | 44,946 | 111,743 |
| 2000 | 2,662 | 8,605 | 11,640 | 16,389 | 17,100 | 14,149 | 53,966 | 124,511 |
| 2001 | 4,343 | 5,407 | 12,288 | 21,329 | 17,980 | 14,822 | 53,879 | 130,048 |
| 2002 | 3,604 | 11,635 | 10,171 | 22,063 | 18,746 | 13,676 | 46,295 | 126,190 |
| 2003 | 2,765 | 9,323 | 15,310 | 13,751 | 19,636 | 18,567 | 41,040 | 120,392 |
| 2004 | 1,356 | 8,096 | 15,636 | 23,500 | 15,868 | 21,763 | 50,848 | 137,067 |
| 2005 | 1,844 | 5,948 | 16,823 | 18,109 | 27,443 | 14,177 | 56,413 | 140,757 |
| 2006 | 2,813 | 8,065 | 12,256 | 19,330 | 21,062 | 24,448 | 53,067 | 141,042 |
| 2007 | 2,082 | 12,350 | 16,813 | 14,238 | 22,607 | 18,839 | 60,625 | 147,553 |
| 2008 | 1,773 | 9,074 | 25,190 | 19,133 | 16,480 | 20,070 | 59,792 | 151,512 |
| 2009 | 641 | 7,803 | 19,051 | 29,457 | 22,453 | 14,775 | 61,811 | 155,991 |

Table 11. Projection results for bluefish through 2012 under 5 different fishing scenarios.

| F <br> status quo |  | F | 1-Jan Abundance (000s) | Mean <br> Biomass <br> (000s mt) | $\begin{gathered} \text { SSB } \\ (000 \mathrm{smt}) \\ \hline \end{gathered}$ | Yield <br> mt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2010 | 0.10 | 79,513 | 138.6 | 131.2 | 9,563 |
|  | 2011 | 0.10 | 83,368 | 138.6 | 130.1 | 9,779 |
|  | 2012 | 0.10 | 86,108 | 141.0 | 129.2 | 10,821 |
| 75\% |  | $\begin{array}{cc}  & \text { 1-Jan } \\ \text { Abundance } \\ \text { F } & (000 s) \\ \hline \end{array}$ |  | Mean <br> Biomass <br> (000s mt) | $\begin{gathered} \text { SSB } \\ (000 \mathrm{~s} \mathrm{mt}) \end{gathered}$ | Yield <br> mt |
| Fmsy | 2010 | 0.10 | 79,513 | 138.6 | 131.2 | 9,563 |
|  | 2011 | 0.14 | 83,368 | 136.7 | 128.3 | 13,489 |
|  | 2012 | 0.14 | 84,493 | 135.2 | 123.8 | 14,490 |
| Ftarget |  | F | $\qquad$ | Mean <br> Biomass (000s mt) | $\begin{gathered} \text { SSB } \\ (000 \mathrm{~s} \mathrm{mt}) \end{gathered}$ | Yield <br> mt |
|  | 2010 | 0.10 | 79,513 | 138.6 | 131.2 | 9,563 |
|  | 2011 | 0.17 | 83,368 | 158.1 | 127.4 | 15,302 |
|  | 2012 | 0.17 | 83,704 | 157.0 | 121.1 | 16,197 |
| F0.1 |  | F | 1-Jan <br> Abundance (000s) | Mean <br> Biomass (000s mt) | $\begin{gathered} \text { SSB } \\ (000 \mathrm{~s} \mathrm{mt}) \end{gathered}$ | Yield <br> mt |
|  | 2010 | 0.10 | 79,513 | 138.6 | 131.2 | 9,563 |
|  | 2011 | 0.18 | 83,368 | 134.9 | 126.5 | 16,654 |
|  | 2012 | 0.18 | 82,926 | 129.7 | 118.6 | 17,096 |
| Fmsy |  | F | 1-Jan <br> Abundance (000s) | Mean <br> Biomass (000s mt) | $\begin{gathered} \text { SSB } \\ (000 \mathrm{smt}) \\ \hline \end{gathered}$ | Yield <br> mt |
|  | 2010 | 0.10 | 79,513 | 162.8 | 131.2 | 9,563 |
|  | 2011 | 0.19 | 83,368 | 162.5 | 126.1 | 17,972 |
|  | 2012 | 0.19 | 82,542 | 157.2 | 117.3 | 18,608 |



Figure 1. Length frequency distribution of commercial bluefish landings, ME-FL, 2006-2009.


Figure 2. Recreational landings (mt) and recreational discard losses (MRFSS B2 estimates * 15\%), ME-FL.


Figure 3. Total length frequencies of combined bluefish commercial and recreational fisheries, 2006-2009.


Figure 4. Standardized age 0 recruitment indices for 2009 by program.


Figure 5. Total bluefish abundance and fishing mortality as estimated in ASAP model. FMSY indicated by solid horizontal line.


Figure 6. Total bluefish abundance at age from ASAP model results.


Figure 7. Total bluefish biomass, spawning stock biomass and reference points.


Figure 8. Retrospective bias in bluefish estimates from ASAP model.


Figure 9. Distribution of bluefish fishing mortality and spawning stock biomass resulting from 2500 MCMC iterations in ASAP model.

## Appendix I. ASAP model output.

| obj_fun | = | 343377 |
| :---: | :---: | :---: |
| Component | Lambda | obj_fun |
| Catch_Fleet_1 | 2000 | 339671 |
| Catch_Fleet_Total | 2000 | 339671 |
| Discard_Fleet_Total | 0 | 0 |
| __Index_Fit_1 | 10 | 1309.8 |
| _Index_Fit_2 | 5 | 707.571 |
| Index_Fit_3 | 5 | 491.779 |
| __Index_Fit_4 | 5 | 47.4302 |
| __Index_Fit_5 | 5 | -100.68 |
| _Index_Fit_6 | 5 | -136.11 |
| Index_Fit_7 | 5 | 27.1739 |
| _Index_Fit_8 | 5 | -157.26 |
| _Index_Fit_9 | 5 | 30.4989 |
| __Index_Fit_10 | 5 | -51.007 |
| __Index_Fit_11 | 5 | 438.972 |
| _Index_Fit_12 | 5 | 330.797 |
| __Index_Fit_13 | 5 | 201.747 |
| __Index_Fit_14 | 5 | 518.341 |
| _Index_Fit_15 | 5 | 605.402 |
| __Index_Fit_16 | 5 | 191.618 |
| _Index_Fit_17 | 5 | 135.418 |
| __Index_Fit_18 | 5 | 33.6683 |
| __Index_Fit_19 | 5 | 189.468 |
| __Index_Fit_20 | 5 | -37.056 |
| __Index_Fit_21 | 5 | -342.09 |
| __Index_Fit_22 | 5 | -238.11 |
| __Index_Fit_23 | 5 | -247.99 |
| _Index_Fit_24 | 5 | -430.29 |
| __Index_Fit_25 | 5 | -568.34 |
| __Index_Fit_26 | 5 | -564.71 |
| __Index_Fit_27 | 5 | -453.55 |
| _Index_Fit_28 | 5 | 386.671 |
| Index_Fit_Total | 145 | 2319.18 |
| Catch_Age_Comps | see_below | 292.509 |
| Discard_Age_Comps | see_below | 0 |
| Survey_Age_Comps | see_below | 0 |
| Sel_Params_Total | 0 | 0 |
| Index_Sel_Params_Total | 0 | 0 |
| __q_year1_index_1 | 0.01 | 0.45336 |
| __q_year1_index_2 | 0.01 | 0.25175 |
| __q_year1_index_3 | 0.01 | 0.03261 |
| __q_year1_index_4 | 0.01 | -0.0273 |
| __q_year1_index_5 | 0.01 | -0.073 |
| __q_year1_index_6 | 0.01 | -0.0663 |
| __q_year1_index_7 | 0.01 | -0.0898 |
| __q_year1_index_8 | 0.01 | -0.0308 |


| _q_year1_index_9 | 0.01 | 0.09016 |
| :---: | :---: | :---: |
| _q_year1_index_10 | 0.01 | -0.0808 |
| q_year1_index_11 | 0.01 | 0.34198 |
| -q_year1_index_12 | 0.01 | 0.0795 |
| _q_year1_index_13 | 0.01 | -0.027 |
| _q_year1_index_14 | 0.01 | 0.60538 |
| q_year1_index_15 | 0.01 | 0.256 |
| _q_year1_index_16 | 0.01 | 0.22285 |
| q_year1_index_17 | 0.01 | 0.10887 |
| _q_year1_index_18 | 0.01 | 0.05431 |
| __q_year1_index_19 | 0.01 | 0.04029 |
| q_year1_index_20 | 0.01 | -0.0534 |
| _q_year1_index_21 | 0.01 | -0.0786 |
| _q_year1_index_22 | 0.01 | -0.0199 |
| __q_year1_index_23 | 0.01 | -0.0225 |
| _q_year1_index_24 | 0.01 | -0.0599 |
| -q_year1_index_25 | 0.01 | -0.0901 |
| __q_year1_index_26 | 0.01 | -0.0777 |
| _q_year1_index_27 | 0.01 | -0.0872 |
| _q_year1_index_28 | 0.01 | 0.26622 |
| q_year1_Total | 0.28 | 1.91894 |
| q_devs_Total | 2800 | 0 |
| Fmult_year1_fleet_1 | 0.5 | -0.6594 |
| Fmult_year1_fleet_Total | 0.5 | -0.6594 |
| Fmultdevs_fleet_Total | 0 | 0 |
| N_year_1 | 1 | 479.868 |
| Recruit_devs | 0.1 | 29.2025 |
| SRR_steepness | 1 | 1.59008 |
| SRR_unexpl_stock | 1 | 582.08 |
| Fmult_Max_penalty | 1000 |  |
| F_penalty | 0 |  |
| Component | \#resids | RMSE |
| Catch_Fleet_1 | 28 | 0.00056 |
| Catch_Fleet_Total | 28 | 0.00056 |
| Discard_Fleet_1 | 0 |  |
| Discard_Fleet_Total | 0 | 0 |
| _Index_1 | 28 | 2.18616 |
| _Index_2 | 28 | 3.02499 |
| _Index_3 | 28 | 3.35732 |
| _Index_4 | 28 | 2.69215 |
| _Index_5 | 25 | 2.66098 |
| _Index_6 | 21 | 2.51511 |
| _Index_7 | 23 | 2.82738 |
| _Index_8 | 20 | 1.3638 |
| _Index_9 | 20 | 1.71315 |
| _Index_10 | 20 | 2.63191 |
| _Index_11 | 22 | 2.28096 |
| _Index_12 | 22 | 2.9382 |
| _Index_13 | 22 | 3.13309 |
| _Index_14 | 25 | 1.34675 |


| _Index_15 |  | 25 | 2.96059 |
| :---: | :---: | :---: | :---: |
| _Index_16 |  | 25 | 1.85805 |
| _Index_17 |  | 25 | 2.31423 |
| _Index_18 |  | 24 | 2.3515 |
| _Index_19 |  | 24 | 3.01591 |
| _Index_20 |  | 23 | 2.40967 |
| _Index_21 |  | 28 | 1.24461 |
| _Index_22 |  | 28 | 1.24388 |
| Index_23 |  | 28 | 1.48879 |
| _Index_24 |  | 28 | 1.22357 |
| _Index_25 |  | 28 | 1.12697 |
| _Index_26 |  | 28 | 1.16985 |
| _Index_27 |  | 28 | 1.04913 |
| _Index_28 |  | 20 | 2.50095 |
| Index_Total |  | 694 | 2.26067 |
| Nyear1 |  | 6 | 11.355 |
| Fmult_Year1 |  | 1 | 1.4304 |
| _Fmult_devs_Fleet_1 |  | 0 | 0 |
| Fmult_devs_Total |  | 0 | 0 |
| Recruit_devs |  | 28 | 0.76885 |
| Fleet_Sel_params |  | 0 | 0 |
| Index_Sel_params |  | 0 | 0 |
| q_year1 |  | 28 | 6.66269 |
| q_devs |  | 0 | 0 |
| SRR_steepness |  | 1 | 2.83696 |
| SRR_unexpl_S |  | 1 | 33.8573 |
| F0.1 | 0.18 |  |  |
| Fmax | 0.28 |  |  |
| F40\% | 0.18 |  |  |
| Fmsy | 0.14 |  |  |
| Fcurrent | 0.10 |  |  |

SSmsy 111,901
MSY 12,856

| steepness | 0.607 |
| ---: | ---: |
| alpha | 32405.3 |
| beta | 62627.4 |
| virgin | 325073 |

# Procedures for Issuing Manuscripts <br> in the <br> Northeast Fisheries Science Center Reference Document (CRD) Series 

## Clearance

All manuscripts submitted for issuance as CRDs must have cleared the NEFSC's manuscript/abstract/ webpage review process. If any author is not a federal employee, he/she will be required to sign an "NEFSC Release-of-Copyright Form." If your manuscript includes material from another work which has been copyrighted, then you will need to work with the NEFSC's Editorial Office to arrange for permission to use that material by securing release signatures on the "NEFSC Use-of-Copyrighted-Work Permission Form."

For more information, NEFSC authors should see the NEFSC's online publication policy manual, "Manuscript/abstract/webpage preparation, review, and dissemination: NEFSC author's guide to policy, process, and procedure," located in the Publications/Manuscript Review section of the NEFSC intranet page.

## Organization

Manuscripts must have an abstract and table of contents, and (if applicable) lists of figures and tables. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area" and/or "Experimental Apparatus," "Methods," "Results," "Discussion," "Conclusions," "Acknowledgments," and "Literature/References Cited."

## Style

The CRD series is obligated to conform with the style contained in the current edition of the United States Government Printing Office Style Manual. That style manual is silent on many aspects of scientific manuscripts. The CRD series relies more on the CSE Style Manual. Manuscripts should be prepared to conform with these style manuals.

The CRD series uses the American Fisheries Society's guides to names of fishes, mollusks, and decapod
crustaceans, the Society for Marine Mammalogy's guide to names of marine mammals, the Biosciences Information Service's guide to serial title abbreviations, and the ISO's (International Standardization Organization) guide to statistical terms.

For in-text citation, use the name-date system. A special effort should be made to ensure that all necessary bibliographic information is included in the list of cited works. Personal communications must include date, full name, and full mailing address of the contact.

## Preparation

Once your document has cleared the review process, the Editorial Office will contact you with publication needs - for example, revised text (if necessary) and separate digital figures and tables if they are embedded in the document. Materials may be submitted to the Editorial Office as files on zip disks or CDs, email attachments, or intranet downloads. Text files should be in Microsoft Word, tables may be in Word or Excel, and graphics files may be in a variety of formats (JPG, GIF, Excel, PowerPoint, etc.).

## Production and Distribution

The Editorial Office will perform a copy-edit of the document and may request further revisions. The Editorial Office will develop the inside and outside front covers, the inside and outside back covers, and the title and bibliographic control pages of the document.

Once both the PDF (print) and Web versions of the CRD are ready, the Editorial Office will contact you to review both versions and submit corrections or changes before the document is posted online.

A number of organizations and individuals in the Northeast Region will be notified by e-mail of the availability of the document online.

## Publications and Reports of the

## Northeast Fisheries Science Center

The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "conducting ecosystem-based research and assessments of living marine resources, with a focus on the Northeast Shelf, to promote the recovery and long-term sustainability of these resources and to generate social and economic opportunities and benefits from their use." Results of NEFSC research are largely reported in primary scientific media (e.g., anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Currently, there are three such media:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of long-term field or lab studies of important species or habitats; synthesis reports for important species or habitats; annual reports of overall assessment or monitoring programs; manuals describing program-wide surveying or experimental techniques; literature surveys of important species or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab studies; progress reports on experiments, monitoring, and assessments; background papers for, collected abstracts of, and/or summary reports of scientific meetings; and simple bibliographies. Issues receive internal scientific review and most issues receive copy editing.

Resource Survey Report (formerly Fishermen's Report) -- This information report is a regularly-issued, quick-turnaround report on the distribution and relative abundance of selected living marine resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. This report undergoes internal review, but receives no technical or copy editing.

[^0]
[^0]:    TO OBTAIN A COPY of a NOAA Technical Memorandum NMFS-NE or a Northeast Fisheries Science Center Reference Document, either contact the NEFSC Editorial Office ( 166 Water St., Woods Hole, MA 02543-1026; 508-495-2350) or consult the NEFSC webpage on "Reports and Publications" (http://www.nefsc.noaa.gov/nefsc/publications/). To access Resource Survey Report, consult the Ecosystem Surveys Branch webpage (http://www.nefsc.noaa.gov/femad/ecosurvey/mainpage/).

    ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.

